Question 198758


{{{(3x+4)(5x-9)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(3x)+4)(highlight(5x)-9)}}} Multiply the <font color="red">F</font>irst terms:{{{(3*x)*(5*x)=15*x^2}}}.



{{{(highlight(3x)+4)(5x+highlight(-9))}}} Multiply the <font color="red">O</font>uter terms:{{{(3*x)*(-9)=-27*x}}}.



{{{(3x+highlight(4))(highlight(5x)-9)}}} Multiply the <font color="red">I</font>nner terms:{{{(4)*(5*x)=20*x}}}.



{{{(3x+highlight(4))(5x+highlight(-9))}}} Multiply the <font color="red">L</font>ast terms:{{{(4)*(-9)=-36}}}.



---------------------------------------------------

So we have the terms: {{{15*x^2}}}, {{{-27*x}}}, {{{20*x}}}, and {{{-36}}} 



{{{15*x^2-27*x+20*x-36}}} Now add every term listed above to make a single expression.



{{{15*x^2-7*x-36}}} Now combine like terms.



So {{{(3x+4)(5x-9)}}} FOILs to {{{15*x^2-7*x-36}}}.



In other words, {{{(3x+4)(5x-9)=15*x^2-7*x-36}}}.