Question 195575
tan(a + b) = [tan a + tan b]/[1 - (tan a)(tan b)]

Proof:

(1) tan(a + b) = sin(a + b)/cos(a + b) 

(2) sin(a + b) = (sin a)(cos b) + (cos a)(sin b) 

(3) cos(a + b) = (cos a)(cos b) - (sin a)(sin b) 

(4) So that:

sin(a + b)/cos(a + b) = [(sin a)(cos b) + (cos a)(sin b)]/[(cos a)(cos b) - (sin a)(sin b)] =

(sin a)(cos b)/[(cos a)(cos b) - (sin a)(sin b)] + (cos a)(sin b)/[(cos a)(cos b) - (sin a)(sin b)]

(5) Multiplying both sides of the fractions by 1/(cos a)(cos b) gives us:

(tan a)/[1 - (tan a)(tan b)] + (tan b)/[1 - (tan a)(tan b)] =

= [tan a + tan b ]/[1 - (tan a)(tan b)]