Question 198297


{{{(3x-7)(2x+5)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(3x)-7)(highlight(2x)+5)}}} Multiply the <font color="red">F</font>irst terms:{{{(3*x)*(2*x)=6*x^2}}}.



{{{(highlight(3x)-7)(2x+highlight(5))}}} Multiply the <font color="red">O</font>uter terms:{{{(3*x)*(5)=15*x}}}.



{{{(3x+highlight(-7))(highlight(2x)+5)}}} Multiply the <font color="red">I</font>nner terms:{{{(-7)*(2*x)=-14*x}}}.



{{{(3x+highlight(-7))(2x+highlight(5))}}} Multiply the <font color="red">L</font>ast terms:{{{(-7)*(5)=-35}}}.



---------------------------------------------------

So we have the terms: {{{6*x^2}}}, {{{15*x}}}, {{{-14*x}}}, {{{-35}}} 



{{{6*x^2+15*x-14*x-35}}} Now add every term listed above to make a single expression.



{{{6*x^2+x-35}}} Now combine like terms.



So {{{(3x-7)(2x+5)}}} FOILs to {{{6*x^2+x-35}}}.



In other words, {{{(3x-7)(2x+5)=6*x^2+x-35}}}.