Question 198205
<font face="Tahoma" size=1.5>
</pre><font size=4><b>
Based on Distance formula: <font color=blue>D = Speed x time </font>


Let <font color=blue>x</font> = Jane's Speed
Also, <font color=blue>x + 15 </font> = Peter's Speed --> {{{15(mi/hr)faster}}}


When we ADD the "Speed" in "3" hours for both, they cover a distance of 225 miles:
Based on the formula,
{{{Distance=S[J]t+S[P]t}}}
{{{225=x(3)+(x+15)(3)}}}
{{{225=3x+3x+45}}}
{{{225-45=6x}}} ----> {{{180=6x}}} ----> {{{cross(180)30/cross(6)=cross(6)x/cross(6)}}}
{{{red(x=30(mi/hr))}}} ----> Jane's Speed
And,
{{{x+15=30+15=red(45(mi/hr))}}} ----> Peter's Speed



We check,
Calculate the Distance travelled for each after 3 hrs:


Jane:
{{{D[J]=S[J]*t=(30)(3)=90miles}}}
Peter:
{{{D[P]=S[P]*t=(45)(3)=135miles}}}


Then, total distance,
{{{225miles=D[J]+D[P]}}}
{{{225miles=90miles+135miles}}}
{{{225miles=225miles}}}



Thank you,
Jojo</font>