Question 197636


Looking at the expression {{{x^2+11x+28}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{11}}}, and the last term is {{{28}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{28}}} to get {{{(1)(28)=28}}}.



Now the question is: what two whole numbers multiply to {{{28}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{11}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{28}}} (the previous product).



Factors of {{{28}}}:

1,2,4,7,14,28

-1,-2,-4,-7,-14,-28



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{28}}}.

1*28
2*14
4*7
(-1)*(-28)
(-2)*(-14)
(-4)*(-7)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{11}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>1+28=29</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>2+14=16</font></td></tr><tr><td  align="center"><font color=red>4</font></td><td  align="center"><font color=red>7</font></td><td  align="center"><font color=red>4+7=11</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>-1+(-28)=-29</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>-2+(-14)=-16</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-4+(-7)=-11</font></td></tr></table>



From the table, we can see that the two numbers {{{4}}} and {{{7}}} add to {{{11}}} (the middle coefficient).



So the two numbers {{{4}}} and {{{7}}} both multiply to {{{28}}} <font size=4><b>and</b></font> add to {{{11}}}



Now replace the middle term {{{11x}}} with {{{4x+7x}}}. Remember, {{{4}}} and {{{7}}} add to {{{11}}}. So this shows us that {{{4x+7x=11x}}}.



{{{x^2+highlight(4x+7x)+28}}} Replace the second term {{{11x}}} with {{{4x+7x}}}.



{{{(x^2+4x)+(7x+28)}}} Group the terms into two pairs.



{{{x(x+4)+(7x+28)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x+4)+7(x+4)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+7)(x+4)}}} Combine like terms. Or factor out the common term {{{x+4}}}


---------------------------------------------



Answer:



So {{{x^2+11x+28}}} factors to {{{(x+7)(x+4)}}}.



Note: you can check the answer by FOILing {{{(x+7)(x+4)}}} to get {{{x^2+11x+28}}} or by graphing the original expression and the answer (the two graphs should be identical).