Question 197440


{{{(2x+1)(x+4)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(2x)+1)(highlight(x)+4)}}} Multiply the <font color="red">F</font>irst terms:{{{(2*x)*(x)=2*x^2}}}.



{{{(highlight(2x)+1)(x+highlight(4))}}} Multiply the <font color="red">O</font>uter terms:{{{(2*x)*(4)=8*x}}}.



{{{(2x+highlight(1))(highlight(x)+4)}}} Multiply the <font color="red">I</font>nner terms:{{{(1)*(x)=x}}}.



{{{(2x+highlight(1))(x+highlight(4))}}} Multiply the <font color="red">L</font>ast terms:{{{(1)*(4)=4}}}.



---------------------------------------------------

So we have the terms: {{{2*x^2}}}, {{{8*x}}}, {{{x}}}, {{{4}}} 



{{{2*x^2+8*x+x+4}}} Now add every term listed above to make a single expression.



{{{2*x^2+9*x+4}}} Now combine like terms.



So {{{(2x+1)(x+4)}}} FOILs to {{{2*x^2+9*x+4}}}.



In other words, {{{(2x+1)(x+4)=2*x^2+9*x+4}}}.