Question 196945
Let the numbers be {{{x}}} and {{{y}}}
{{{y - x = 14}}}
{{{y = x + 14}}}
The product is {{{x*y}}}
{{{x*y = x*(x + 14)}}}
{{{x*y = x^2 + 14x}}}
The function {{{f(x) = x^2 + 14x}}}
Is a minimum when {{{x = -b/(2a)}}}
{{{a = 1}}}
{{{b = 14}}}
{{{x[min] = -14/2}}}
{{{x[min] = -7}}}
{{{y = x + 14}}}
{{{y = -7 + 14}}}
{{{y = 7}}}
The numbers are 7 and -7
check:
The product is {{{-49}}}
If I change the numbers very slightly, what 
happens to the product?
{{{x = -6.9}}}
{{{y = x + 14}}}
{{{y = -6.9 + 14}}}
{{{y = 7.1}}}
{{{-6.9*7.1 = -48.99}}}
This gives me more confidence answer is right