Question 197009
{{{1-3*log(5,(x))}}} Start with the given expression.



{{{log(5,(5))-3*log(5,(x))}}} Rewrite "1" as {{{log(5,(5))}}}



Note:  {{{log(b,(b))=1}}} where {{{b>1}}}. 



{{{log(5,(5))-log(5,(x^3))}}} Rewrite the second log using the identity  {{{y*log(b,(x))=log(b,(x^y))}}}



{{{log(5,(5/(x^3)))}}} Combine the logs using the identity {{{log(b,(A))-log(b,(B))=log(b,(A/B))}}}



So {{{1-3*log(5,(x))=log(5,(5/(x^3)))}}} where {{{x>0}}}