Question 195801
<font face="Garamond" size="+2">


Presuming the tower is exactly vertical and the ground is perfectly level -- an ok assumption in a math word problem, but not necessarily valid in a real life situation -- then you have a right triangle with a hypotenuse of <b><i></i>30</b>, a short leg of <b><i>d</i></b>, and a long leg of <b><i>d</i> + 6</b>, so:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ d^2 + (d + 6)^2 = 30^2]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ d^2 + d^2 + 12d + 36 = 900]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 2d^2 + 12d - 864 = 0]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ d^2 + 6d - 432 = 0]


So just solve the quadratic for <b><i>d</i></b>.  Hint:  It factors.  Exclude the negative root because you are looking for a positive measure of length.



John
*[tex \LARGE e^{i\pi} + 1 = 0]
</font>