Question 195104
{{{(6+2i)/(4-3i)}}} Start with the given expression.



{{{((6+2i)/(4-3i))((4+3i)/(4+3i))}}} Multiply the fraction by {{{(4+3i)/(4+3i)}}}.



{{{((6+2i)(4+3i))/((4-3i)(4+3i))}}} Combine the fractions.



{{{((6)(4)+(6)(3i)+(2i)(4)+(2i)(3i))/((4-3i)(4+3i))}}} FOIL the numerator.



{{{((6)(4)+(6)(3i)+(2i)(4)+(2i)(3i))/((4)(4)+(4)(3i)+(-3i)(4)+(-3i)(3i))}}} FOIL the denominator.



{{{(24+18i+8i+6i^2)/(16+12i-12i-9i^2)}}} Multiply.



{{{(18+26i)/(25)}}} Combine like terms.



{{{18/25+(26/25)i}}} Break up the fraction.



So {{{(6+2i)/(4-3i)=18/25+(26/25)i}}}.



So the expression is now in standard form {{{a+bi}}} where {{{a=18/25}}} and {{{b=26/25}}}