Question 194041


{{{(2x+4)(2x+4)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(2x)+4)(highlight(2x)+4)}}} Multiply the <font color="red">F</font>irst terms:{{{(2*x)*(2*x)=4*x^2}}}.



{{{(highlight(2x)+4)(2x+highlight(4))}}} Multiply the <font color="red">O</font>uter terms:{{{(2*x)*(4)=8*x}}}.



{{{(2x+highlight(4))(highlight(2x)+4)}}} Multiply the <font color="red">I</font>nner terms:{{{(4)*(2*x)=8*x}}}.



{{{(2x+highlight(4))(2x+highlight(4))}}} Multiply the <font color="red">L</font>ast terms:{{{(4)*(4)=16}}}.



{{{4*x^2+8*x+8*x+16}}} Now collect every term to make a single expression.



{{{4*x^2+16*x+16}}} Now combine like terms.



So {{{(2x+4)(2x+4)}}} FOILs to {{{4*x^2+16*x+16}}}.



In other words, {{{(2x+4)(2x+4)=4*x^2+16*x+16}}}.



Note: another way to expand is to use the perfect square formula