Question 192380
<font face="Garamond" size="+2">


First use the two-point form of the equation of a line:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y - y_1 = \left(\frac{y_1 - y_2}{x_1 - x_2}\right)(x - x_1) ]


Where the given points are: *[tex \Large (x_1,y_1)] and *[tex \Large (x_2,y_2)]


Substituting the values, given that your points are: *[tex \Large (-5,6)] and *[tex \Large (1,0)]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y - 6 = \left(\frac{6 - 0}{-5 - 1}\right)(x - (-5)) ]


Do the arithmetic:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y - 6 = \left(\frac{6}{-6}\right)(x + 5) ]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y - 6 = -(x + 5) ]


Now solve for *[tex \LARGE y] to put the equation in slope-intercept form, *[tex \LARGE y = mx + b]:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y - 6 = -x - 5 ]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y = -x + 1]


Notice that *[tex \LARGE m = -1] and *[tex \LARGE b = 1]


John
*[tex \LARGE e^{i\pi} + 1 = 0]
</font>