Question 192141
good  work

an  easier  approach  might  be  

y=-2(x-8)/(8-x)

simplify  to

y= 2(x-8) / (x-8)

cancelling  (x-8) 's  gives  us  y=+2   but  with a  hole  at  x=8

no  vertical  asymptotes  (  ie  den  =0)

no  real  horizontal  asymptotes  except  y  does  always  =2

review  of  horiz  asymptotes,  y  =   a(n)x^n  +..... / b(m) x^m +.....

if  n  less  than m,   hor  asy  at  y=0

if  n=m,  hor  asy  at  y=a(n)/b(m)

and  if  n>m,    no  hor  asy