Question 191991
{{{sqrt((27p^4)/(3p^2))}}} Start with the given expression.



{{{sqrt(9p^2)}}} Divide {{{(27p^4)/(3p^2)}}} to get {{{9p^2}}}



{{{sqrt(9)*sqrt(p^2)}}} Break up the square root using the identity {{{sqrt(A*B)=sqrt(A)*sqrt(B)}}}.



{{{3*sqrt(p^2)}}} Take the square root of {{{9}}} to get {{{3}}}.



{{{3p}}} Take the square root of {{{p^2}}} to get {{{p}}}.



==================================================


Answer:



So {{{sqrt(9*p^2)}}} simplifies to {{{3p}}}



In other words, {{{sqrt(9*p^2)=3p}}} where {{{p>=0}}}.