Question 191767


Looking at the expression {{{2x^2+3x-5}}}, we can see that the first coefficient is {{{2}}}, the second coefficient is {{{3}}}, and the last term is {{{-5}}}.



Now multiply the first coefficient {{{2}}} by the last term {{{-5}}} to get {{{(2)(-5)=-10}}}.



Now the question is: what two whole numbers multiply to {{{-10}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{3}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-10}}} (the previous product).



Factors of {{{-10}}}:

1,2,5,10

-1,-2,-5,-10



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-10}}}.

1*(-10)
2*(-5)
(-1)*(10)
(-2)*(5)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{3}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>1+(-10)=-9</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>2+(-5)=-3</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-1+10=9</font></td></tr><tr><td  align="center"><font color=red>-2</font></td><td  align="center"><font color=red>5</font></td><td  align="center"><font color=red>-2+5=3</font></td></tr></table>



From the table, we can see that the two numbers {{{-2}}} and {{{5}}} add to {{{3}}} (the middle coefficient).



So the two numbers {{{-2}}} and {{{5}}} both multiply to {{{-10}}} <font size=4><b>and</b></font> add to {{{3}}}



Now replace the middle term {{{3x}}} with {{{-2x+5x}}}. Remember, {{{-2}}} and {{{5}}} add to {{{3}}}. So this shows us that {{{-2x+5x=3x}}}.



{{{2x^2+highlight(-2x+5x)-5}}} Replace the second term {{{3x}}} with {{{-2x+5x}}}.



{{{(2x^2-2x)+(5x-5)}}} Group the terms into two pairs.



{{{2x(x-1)+(5x-5)}}} Factor out the GCF {{{2x}}} from the first group.



{{{2x(x-1)+5(x-1)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2x+5)(x-1)}}} Combine like terms. Or factor out the common term {{{x-1}}}


---------------------------------------------



Answer:



So {{{2x^2+3x-5}}} factors to {{{(2x+5)(x-1)}}}.



Note: you can check the answer by FOILing {{{(2x+5)(x-1)}}} to get {{{2x^2+3x-5}}} or by graphing the original expression and the answer (the two graphs should be identical).