Question 191477


{{{70a^2b+27ab-9b}}} Start with the given expression



{{{b(70a^2+27a-9)}}} Factor out the GCF {{{b}}}



Now let's focus on the inner expression {{{70a^2+27a-9}}}





------------------------------------------------------------




Looking at {{{70a^2+27a-9}}} we can see that the first term is {{{70a^2}}} and the last term is {{{-9}}} where the coefficients are 70 and -9 respectively.


Now multiply the first coefficient 70 and the last coefficient -9 to get -630. Now what two numbers multiply to -630 and add to the  middle coefficient 27? Let's list all of the factors of -630:




Factors of -630:

1,2,3,5,6,7,9,10,14,15,18,21,30,35,42,45,63,70,90,105,126,210,315,630


-1,-2,-3,-5,-6,-7,-9,-10,-14,-15,-18,-21,-30,-35,-42,-45,-63,-70,-90,-105,-126,-210,-315,-630 ...List the negative factors as well. This will allow us to find all possible combinations


These factors pair up and multiply to -630

(1)*(-630)

(2)*(-315)

(3)*(-210)

(5)*(-126)

(6)*(-105)

(7)*(-90)

(9)*(-70)

(10)*(-63)

(14)*(-45)

(15)*(-42)

(18)*(-35)

(21)*(-30)

(-1)*(630)

(-2)*(315)

(-3)*(210)

(-5)*(126)

(-6)*(105)

(-7)*(90)

(-9)*(70)

(-10)*(63)

(-14)*(45)

(-15)*(42)

(-18)*(35)

(-21)*(30)


note: remember, the product of a negative and a positive number is a negative number



Now which of these pairs add to 27? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 27


<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td align="center">1</td><td align="center">-630</td><td>1+(-630)=-629</td></tr><tr><td align="center">2</td><td align="center">-315</td><td>2+(-315)=-313</td></tr><tr><td align="center">3</td><td align="center">-210</td><td>3+(-210)=-207</td></tr><tr><td align="center">5</td><td align="center">-126</td><td>5+(-126)=-121</td></tr><tr><td align="center">6</td><td align="center">-105</td><td>6+(-105)=-99</td></tr><tr><td align="center">7</td><td align="center">-90</td><td>7+(-90)=-83</td></tr><tr><td align="center">9</td><td align="center">-70</td><td>9+(-70)=-61</td></tr><tr><td align="center">10</td><td align="center">-63</td><td>10+(-63)=-53</td></tr><tr><td align="center">14</td><td align="center">-45</td><td>14+(-45)=-31</td></tr><tr><td align="center">15</td><td align="center">-42</td><td>15+(-42)=-27</td></tr><tr><td align="center">18</td><td align="center">-35</td><td>18+(-35)=-17</td></tr><tr><td align="center">21</td><td align="center">-30</td><td>21+(-30)=-9</td></tr><tr><td align="center">-1</td><td align="center">630</td><td>-1+630=629</td></tr><tr><td align="center">-2</td><td align="center">315</td><td>-2+315=313</td></tr><tr><td align="center">-3</td><td align="center">210</td><td>-3+210=207</td></tr><tr><td align="center">-5</td><td align="center">126</td><td>-5+126=121</td></tr><tr><td align="center">-6</td><td align="center">105</td><td>-6+105=99</td></tr><tr><td align="center">-7</td><td align="center">90</td><td>-7+90=83</td></tr><tr><td align="center">-9</td><td align="center">70</td><td>-9+70=61</td></tr><tr><td align="center">-10</td><td align="center">63</td><td>-10+63=53</td></tr><tr><td align="center">-14</td><td align="center">45</td><td>-14+45=31</td></tr><tr><td align="center">-15</td><td align="center">42</td><td>-15+42=27</td></tr><tr><td align="center">-18</td><td align="center">35</td><td>-18+35=17</td></tr><tr><td align="center">-21</td><td align="center">30</td><td>-21+30=9</td></tr></table>



From this list we can see that -15 and 42 add up to 27 and multiply to -630



Now looking at the expression {{{70a^2+27a-9}}}, replace {{{27a}}} with {{{-15a+42a}}} (notice {{{-15a+42a}}} adds up to {{{27a}}}. So it is equivalent to {{{27a}}})


{{{70a^2+highlight(-15a+42a)-9}}}



Now let's factor {{{70a^2-15a+42a-9}}} by grouping:



{{{(70a^2-15a)+(42a-9)}}} Group like terms



{{{5a(14a-3)+3(14a-3)}}} Factor out the GCF of {{{5a}}} out of the first group. Factor out the GCF of {{{3}}} out of the second group



{{{(5a+3)(14a-3)}}} Since we have a common term of {{{14a-3}}}, we can combine like terms


So {{{70a^2-15a+42a-9}}} factors to {{{(5a+3)(14a-3)}}}



So this also means that {{{70a^2+27a-9}}} factors to {{{(5a+3)(14a-3)}}} (since {{{70a^2+27a-9}}} is equivalent to {{{70a^2-15a+42a-9}}})




------------------------------------------------------------





So our expression goes from {{{b(70a^2+27a-9)}}} and factors further to {{{b(5a+3)(14a-3)}}}



------------------

Answer:


So {{{70a^2b+27ab-9b}}} completely factors to {{{b(5a+3)(14a-3)}}}