Question 191277
<font face="Garamond" size="+2">


A regular pentagon has 5 equal length sides.  So if one of them is 


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  2x^2 + 9x + 9]


Then the perimeter has to be:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  5(2x^2 + 9x + 9)=10x^2 + 45x + 45]


Factor:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 3 \times 15 = 45]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 10 \times 1 = 10]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 10 \times 3 + 15 + 1 = 45]


So:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 10x^2 + 45x + 45 = (10x + 15)(x + 3) = 5(2x + 3)(x + 3)]


John
*[tex \LARGE e^{i\pi} + 1 = 0]
</font>