Question 191051
I'm assuming that the function is {{{f(x)=e^(-2x)+1}}}. 



Evaluating f(-1):



{{{f(x)=e^(-2x)+1}}} Start with the given equation.



{{{f(-1)=e^(-2(-1))+1}}} Plug in {{{x=-1}}}.



{{{f(-1)=e^(2)+1}}} Multiply -2 and -1 to get 2.



{{{f(-1)=7.3891+1}}} Raise "e" to the 2nd power to get 7.3891 (note: this value is approximate).



{{{f(-1)=8.3891}}} Add 1 to 7.3891 to get 8.3891.



----------------------------



Evaluating f(3):



{{{f(x)=e^(-2x)+1}}} Start with the given equation.



{{{f(3)=e^(-2(3))+1}}} Plug in {{{x=3}}}.



{{{f(3)=e^(-6)+1}}} Multiply -2 and 3 to get -6.



{{{f(3)=0.0025+1}}} Raise "e" to the -6th power to get 0.0025 (note: this value is approximate).



{{{f(3)=1.0025}}} Add 1 to 0.0025 to get 1.0025.



----------------------------



Evaluating f(-2):



{{{f(x)=e^(-2x)+1}}} Start with the given equation.



{{{f(-2)=e^(-2(-2))+1}}} Plug in {{{x=-2}}}.



{{{f(-2)=e^(4)+1}}} Multiply -2 and -2 to get 4.



{{{f(-2)=54.5982+1}}} Raise "e" to the 4th power to get 54.5982 (note: this value is approximate).



{{{f(-2)=55.5982}}} Add 1 to 54.5982 to get 55.5982.