Question 190816
<font face="Tahoma" size=1.5>
</pre><font size=4><b>
Thru point SLope-Form,{{{system(m=(y[2]-y[1])/(x[2]-x[1]))}}} we can compute for the slope thru 2 given points (-4,0) and (0,6). 


But we'll do thru the graph by drawing  a line thru the points:
{{{drawing(400,400,-9,9,-9,9,grid(1),graph(400,400,-9,9,-9,9),blue(circle(-4,0,.19)),blue(circle(0,6,.19)),blue(circle(-4,0,.22)),blue(circle(0,6,.22)))}}} ---> {{{drawing(400,400,-9,9,-9,9,grid(1),graph(400,400,-9,9,-9,9),blue(circle(-4,0,.19)),blue(circle(0,6,.19)),green(line(0,6,-8,-6)),red(circle(-2,3,.12)),red(circle(-6,-3,.12)),red(circle(-8,-6,.12)),red(circle(-4,0,.12)),red(circle(0,6,.12)),blue(circle(-4,0,.22)),blue(circle(0,6,.22)))}}}



As you can see, we moved up or down "3" spaces and left or right  "2" spaces as we get the slope. There's a rise of <font color=blue>3</font> and a run of <font color=blue>2</font>.


It follows, {{{Slope=m=DELTA(y)/DELTA(x)=rise/run=3/2}}}, Answer


Any parallel line to this will be the same slope, {{{red(m=m[1])}}}



Drawing a line from the origin, parallel to the line above:


Thru point(0,0) with slope , m=3/2:
{{{y=mx+b}}}
{{{0=(3/2)(0)+b}}}
{{{b=0}}}, Y-Intercept


It follows, {{{red(y=(3/2)x)+0)}}}
{{{drawing(400,400,-9,9,-9,9,grid(1),graph(400,400,-9,9,-9,9,(3/2)x,(3/2)x+6),blue(circle(-4,0,.19)),blue(circle(0,6,.19)),green(line(2,9,-8,-6)),red(circle(-2,3,.12)),red(circle(-6,-3,.12)),red(circle(-8,-6,.12)),red(circle(-4,0,.12)),red(circle(0,6,.12)),blue(circle(-4,0,.22)),blue(circle(0,6,.22)))}}} ---> {{{red(RED=L[2])}}}; {{{green(GREEN=L[1])}}}



Thank you,
Jojo</font>