Question 190492
<font face="Times New Roman" size="+2">


The diagonals of a parallelogram bisect each other, so the coordinates of the point of intersection are the coordinates of the midpoint of either diagonal.  Use the midpoint formulae:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \ \ x_m = \frac{x_1+x_2}{2}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \ \ y_m = \frac{y_1+y_2}{2}]


Where *[tex \LARGE (x_1,y_1)] and *[tex \LARGE (x_2,y_2)] are the coordinates of the endpoints of either diagonal.  Then the ordered pair, *[tex \LARGE (x_m,y_m)] will be your answer.


John
*[tex \Large e^{i\pi} + 1 = 0]
</font>