Question 190601


{{{2*sqrt(18)+3*sqrt(32)}}} Start with the given expression



{{{2*3*sqrt(2)+3*sqrt(32)}}} Simplify {{{sqrt(18)}}} to get {{{3*sqrt(2)}}}. Note: If you need help with simplifying square roots, check out this <a href=http://www.algebra.com/algebra/homework/Radicals/simplifying-square-roots.solver> solver</a>.



{{{2*3*sqrt(2)+3*4*sqrt(2)}}} Simplify {{{sqrt(32)}}} to get {{{4*sqrt(2)}}}.



{{{6*sqrt(2)+3*4*sqrt(2)}}} Multiply 2 and 3 to get 6.

 

{{{6*sqrt(2)+12*sqrt(2)}}} Multiply 3 and 4 to get 12.

 

Since we have the common term {{{sqrt(2)}}}, we can combine like terms



{{{(6+12)sqrt(2)}}} Combine like terms. Remember, {{{5x+3x-4x=(5+3-4)x=4x}}}



{{{18*sqrt(2)}}} Now simplify {{{6+12}}} to get {{{18}}}



So {{{2*sqrt(18)+3*sqrt(32)}}} simplifies to {{{18*sqrt(2)}}}. 



In other words,  {{{2*sqrt(18)+3*sqrt(32)=18*sqrt(2)}}}