Question 190585
Is the equation {{{2x/5+1/3=7x-2/15}}} ???



{{{2x/5+1/3=7x-2/15}}} Start with the given equation.



{{{cross(15)^3(2x/cross(5))+cross(15)^5(1/cross(3))=15(7x)-cross(15)(2/cross(15))}}} Multiply EVERY term by the LCD {{{15}}} to clear any fractions.



{{{6x+5=105x-2}}} Multiply.



{{{6x=105x-2-5}}} Subtract {{{5}}} from both sides.



{{{6x-105x=-2-5}}} Subtract {{{105x}}} from both sides.



{{{-99x=-2-5}}} Combine like terms on the left side.



{{{-99x=-7}}} Combine like terms on the right side.



{{{x=(-7)/(-99)}}} Divide both sides by {{{-99}}} to isolate {{{x}}}.



{{{x=7/99}}} Reduce.



----------------------------------------------------------------------


Answer:


So the answer is {{{x=7/99}}} which approximates to {{{x=0.071}}}. 




===============================================================


OR....


Is the equation {{{2x/5+1/3=(7x-2)/15}}} ???



{{{2x/5+1/3=(7x-2)/15}}} Start with the given equation.



{{{cross(15)^3(2x/cross(5))+cross(15)^5(1/cross(3))=cross(15)((7x-2)/cross(15))}}} Multiply EVERY term by the LCD 15 to clear out the fractions



{{{3(2x)+5(3)=7x-2}}} Simplify



{{{6x+15=7x-2}}} Multiply



{{{6x=7x-2-15}}} Subtract {{{15}}} from both sides.



{{{6x-7x=-2-15}}} Subtract {{{7x}}} from both sides.



{{{-x=-2-15}}} Combine like terms on the left side.



{{{-x=-17}}} Combine like terms on the right side.



{{{x=(-17)/(-1)}}} Divide both sides by {{{-1}}} to isolate {{{x}}}.



{{{x=17}}} Reduce.



----------------------------------------------------------------------


Answer:


So the answer is {{{x=17}}}