Question 190527
{{{7/(3x^5)-8/(2x^3)}}} Start with the given expression



Take note that the LCD is {{{6x^5}}}



{{{(7*2)/(3x^5*2)-8/(2x^3)}}} Multiply the first fraction by {{{2/2}}} to get the denominator to the LCD



{{{14/(6x^5)-8/(2x^3)}}} Multiply



{{{14/(6x^5)-(8*3x^2)/(2x^3*3x^2)}}} Multiply the second fraction by {{{(3x^2)/(3x^2)}}} to get the denominator to the LCD




{{{14/(6x^5)-(24x^2)/(6x^5)}}} Multiply



{{{(14-24x^2)/(6x^5)}}} Combine the fractions.



{{{(2(7-12x^2))/(6x^5)}}} Factor out the GCF 2 from the numerator



{{{(2(7-12x^2))/(2*3x^5)}}} Factor 6 to get 2*3



{{{(cross(2)(7-12x^2))/(cross(2)*3x^5)}}} Cancel out the common terms.



{{{(7-12x^2)/(3x^5)}}} Simplify



So {{{7/(3x^5)-8/(2x^3)=(7-12x^2)/(3x^5)}}} where {{{x<>0}}}