Question 190250


{{{3x^2+27x+42}}} Start with the given expression



{{{3(x^2+9x+14)}}} Factor out the GCF {{{3}}}



Now let's focus on the inner expression {{{x^2+9x+14}}}





------------------------------------------------------------





Looking at the expression {{{x^2+9x+14}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{9}}}, and the last term is {{{14}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{14}}} to get {{{(1)(14)=14}}}.



Now the question is: what two whole numbers multiply to {{{14}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{9}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{14}}} (the previous product).



Factors of {{{14}}}:

1,2,7,14

-1,-2,-7,-14



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{14}}}.

1*14
2*7
(-1)*(-14)
(-2)*(-7)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{9}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>1+14=15</font></td></tr><tr><td  align="center"><font color=red>2</font></td><td  align="center"><font color=red>7</font></td><td  align="center"><font color=red>2+7=9</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>-1+(-14)=-15</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-2+(-7)=-9</font></td></tr></table>



From the table, we can see that the two numbers {{{2}}} and {{{7}}} add to {{{9}}} (the middle coefficient).



So the two numbers {{{2}}} and {{{7}}} both multiply to {{{14}}} <font size=4><b>and</b></font> add to {{{9}}}



Now replace the middle term {{{9x}}} with {{{2x+7x}}}. Remember, {{{2}}} and {{{7}}} add to {{{9}}}. So this shows us that {{{2x+7x=9x}}}.



{{{x^2+highlight(2x+7x)+14}}} Replace the second term {{{9x}}} with {{{2x+7x}}}.



{{{(x^2+2x)+(7x+14)}}} Group the terms into two pairs.



{{{x(x+2)+(7x+14)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x+2)+7(x+2)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+7)(x+2)}}} Combine like terms. Or factor out the common term {{{x+2}}}



So {{{x^2+9x+14}}} factors to {{{(x+7)(x+2)}}}.





------------------------------------------------------------





So our expression goes from {{{3(x^2+9x+14)}}} and factors further to {{{3(x+7)(x+2)}}}



------------------

Answer:


So {{{3x^2+27x+42}}} completely factors to {{{3(x+7)(x+2)}}}