Question 190254


Looking at the expression {{{x^2+18x+45}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{18}}}, and the last term is {{{45}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{45}}} to get {{{(1)(45)=45}}}.



Now the question is: what two whole numbers multiply to {{{45}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{18}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{45}}} (the previous product).



Factors of {{{45}}}:

1,3,5,9,15,45

-1,-3,-5,-9,-15,-45



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{45}}}.

1*45
3*15
5*9
(-1)*(-45)
(-3)*(-15)
(-5)*(-9)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{18}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>1+45=46</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>15</font></td><td  align="center"><font color=red>3+15=18</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>5+9=14</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>-1+(-45)=-46</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-3+(-15)=-18</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-5+(-9)=-14</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{15}}} add to {{{18}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{15}}} both multiply to {{{45}}} <font size=4><b>and</b></font> add to {{{18}}}



Now replace the middle term {{{18x}}} with {{{3x+15x}}}. Remember, {{{3}}} and {{{15}}} add to {{{18}}}. So this shows us that {{{3x+15x=18x}}}.



{{{x^2+highlight(3x+15x)+45}}} Replace the second term {{{18x}}} with {{{3x+15x}}}.



{{{(x^2+3x)+(15x+45)}}} Group the terms into two pairs.



{{{x(x+3)+(15x+45)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x+3)+15(x+3)}}} Factor out {{{15}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+15)(x+3)}}} Combine like terms. Or factor out the common term {{{x+3}}}


---------------------------------------------



Answer:



So {{{x^2+18x+45}}} factors to {{{(x+15)(x+3)}}}.



Note: you can check the answer by FOILing {{{(x+15)(x+3)}}} to get {{{x^2+18x+45}}} or by graphing the original expression and the answer (the two graphs should be identical).