Question 190255


Looking at the expression {{{x^2-x-56}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-1}}}, and the last term is {{{-56}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-56}}} to get {{{(1)(-56)=-56}}}.



Now the question is: what two whole numbers multiply to {{{-56}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-1}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-56}}} (the previous product).



Factors of {{{-56}}}:

1,2,4,7,8,14,28,56

-1,-2,-4,-7,-8,-14,-28,-56



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-56}}}.

1*(-56)
2*(-28)
4*(-14)
7*(-8)
(-1)*(56)
(-2)*(28)
(-4)*(14)
(-7)*(8)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-1}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-56</font></td><td  align="center"><font color=black>1+(-56)=-55</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>2+(-28)=-26</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>4+(-14)=-10</font></td></tr><tr><td  align="center"><font color=red>7</font></td><td  align="center"><font color=red>-8</font></td><td  align="center"><font color=red>7+(-8)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>56</font></td><td  align="center"><font color=black>-1+56=55</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>-2+28=26</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>-4+14=10</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-7+8=1</font></td></tr></table>



From the table, we can see that the two numbers {{{7}}} and {{{-8}}} add to {{{-1}}} (the middle coefficient).



So the two numbers {{{7}}} and {{{-8}}} both multiply to {{{-56}}} <font size=4><b>and</b></font> add to {{{-1}}}



Now replace the middle term {{{-1x}}} with {{{7x-8x}}}. Remember, {{{7}}} and {{{-8}}} add to {{{-1}}}. So this shows us that {{{7x-8x=-1x}}}.



{{{x^2+highlight(7x-8x)-56}}} Replace the second term {{{-1x}}} with {{{7x-8x}}}.



{{{(x^2+7x)+(-8x-56)}}} Group the terms into two pairs.



{{{x(x+7)+(-8x-56)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x+7)-8(x+7)}}} Factor out {{{8}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-8)(x+7)}}} Combine like terms. Or factor out the common term {{{x+7}}}


---------------------------------------------



Answer:



So {{{x^2-x-56}}} factors to {{{(x-8)(x+7)}}}.



Note: you can check the answer by FOILing {{{(x-8)(x+7)}}} to get {{{x^2-x-56}}} or by graphing the original expression and the answer (the two graphs should be identical).