Question 189872


Looking at the expression {{{3m^2-8m-3}}}, we can see that the first coefficient is {{{3}}}, the second coefficient is {{{-8}}}, and the last term is {{{-3}}}.



Now multiply the first coefficient {{{3}}} by the last term {{{-3}}} to get {{{(3)(-3)=-9}}}.



Now the question is: what two whole numbers multiply to {{{-9}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-8}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-9}}} (the previous product).



Factors of {{{-9}}}:

1,3,9

-1,-3,-9



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-9}}}.

1*(-9)
3*(-3)
(-1)*(9)
(-3)*(3)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-8}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=red>1</font></td><td  align="center"><font color=red>-9</font></td><td  align="center"><font color=red>1+(-9)=-8</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>3+(-3)=0</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>-1+9=8</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-3+3=0</font></td></tr></table>



From the table, we can see that the two numbers {{{1}}} and {{{-9}}} add to {{{-8}}} (the middle coefficient).



So the two numbers {{{1}}} and {{{-9}}} both multiply to {{{-9}}} <font size=4><b>and</b></font> add to {{{-8}}}



Now replace the middle term {{{-8m}}} with {{{m-9m}}}. Remember, {{{1}}} and {{{-9}}} add to {{{-8}}}. So this shows us that {{{m-9m=-8m}}}.



{{{3m^2+highlight(m-9m)-3}}} Replace the second term {{{-8m}}} with {{{m-9m}}}.



{{{(3m^2+m)+(-9m-3)}}} Group the terms into two pairs.



{{{m(3m+1)+(-9m-3)}}} Factor out the GCF {{{m}}} from the first group.



{{{m(3m+1)-3(3m+1)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(m-3)(3m+1)}}} Combine like terms. Or factor out the common term {{{3m+1}}}


---------------------------------------------



Answer:



So {{{3m^2-8m-3}}} factors to {{{(m-3)(3m+1)}}}.



Note: you can check the answer by FOILing {{{(m-3)(3m+1)}}} to get {{{3m^2-8m-3}}} or by graphing the original expression and the answer (the two graphs should be identical).