Question 189847
<font face="Garamond" size="+2">


A line perpendicular to the <i><b>x</b></i>-axis is a vertical line.  All vertical lines have an equation of the form:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x = a]


meaning the set of ordered pairs where the <i><b>x</b></i>-coordinate is always <i><b>a</b></i> and the <i><b>y</b></i>-coordinate is any real number.


The <i><b>x</b></i>-intercept of the given equation is an ordered pair of the form (<i><b>a</b></i>,<i><b>0</b></i>), so you need to find the value of <i><b>a</b></i> to substitute for <i><b>x</b></i> in *[tex \LARGE 6x-5y+18=0] so that <i><b>y</b></i> = 0.


To find this value, rearrange the equation so that you have <i><b>y</b></i> on one side of the equals sign and everything else on the other side.  Then replace <i><b>y</b></i> with 0 and solve for <i><b>x</b></i>.  This value will be your <i><b>a</b></i> in the equation above.


To me,


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x = a]


is Standard Form, though some may prefer


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x - a = 0]


It depends on whether Standard Form is defined as:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ Ax + By = C]


or


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ Ax + By + C = 0]


John
*[tex \LARGE e^{i\pi} + 1 = 0]
</font>