Question 189832
Looking at the expression {{{30x^2+4x-2}}}, we can see that the first coefficient is {{{30}}}, the second coefficient is {{{4}}}, and the last term is {{{-2}}}.



Now multiply the first coefficient {{{30}}} by the last term {{{-2}}} to get {{{(30)(-2)=-60}}}.



Now the question is: what two whole numbers multiply to {{{-60}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{4}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-60}}} (the previous product).



Factors of {{{-60}}}:

1,2,3,4,5,6,10,12,15,20,30,60

-1,-2,-3,-4,-5,-6,-10,-12,-15,-20,-30,-60



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-60}}}.

1*(-60)
2*(-30)
3*(-20)
4*(-15)
5*(-12)
6*(-10)
(-1)*(60)
(-2)*(30)
(-3)*(20)
(-4)*(15)
(-5)*(12)
(-6)*(10)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{4}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>1+(-60)=-59</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>2+(-30)=-28</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>3+(-20)=-17</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>4+(-15)=-11</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>5+(-12)=-7</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>6+(-10)=-4</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>-1+60=59</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>-2+30=28</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>-3+20=17</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>-4+15=11</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-5+12=7</font></td></tr><tr><td  align="center"><font color=red>-6</font></td><td  align="center"><font color=red>10</font></td><td  align="center"><font color=red>-6+10=4</font></td></tr></table>



From the table, we can see that the two numbers {{{-6}}} and {{{10}}} add to {{{4}}} (the middle coefficient).



So the two numbers {{{-6}}} and {{{10}}} both multiply to {{{-60}}} <font size=4><b>and</b></font> add to {{{4}}}



Now replace the middle term {{{4x}}} with {{{-6x+10x}}}. Remember, {{{-6}}} and {{{10}}} add to {{{4}}}. So this shows us that {{{-6x+10x=4x}}}.



{{{30x^2+highlight(-6x+10x)-2}}} Replace the second term {{{4x}}} with {{{-6x+10x}}}.



{{{(30x^2-6x)+(10x-2)}}} Group the terms into two pairs.



{{{6x(5x-1)+(10x-2)}}} Factor out the GCF {{{6x}}} from the first group.



{{{6x(5x-1)+2(5x-1)}}} Factor out {{{2}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(6x+2)(5x-1)}}} Combine like terms. Or factor out the common term {{{5x-1}}}


---------------------------------------------



Answer:



So {{{30x^2+4x-2}}} factors to {{{(6x+2)(5x-1)}}}.



Note: you can check the answer by FOILing {{{(6x+2)(5x-1)}}} to get {{{30x^2+4x-2}}} or by graphing the original expression and the answer (the two graphs should be identical).