Question 189606
You can use polynomial long division, but here's an easier way



{{{(98x^3+84x^2-21x+28)/(7x^2)}}} Start with the given expression.



{{{(98x^3+84x^2)/(7x^2)+(-21x+28)/(7x^2)}}} Break up the fraction where two terms are in the numerators



{{{(7x^2(14x+12))/(7x^2)+(-21x+28)/(7x^2)}}} Factor out the GCF from the first fraction's numerator



{{{(7x^2(14x+12))/(7x^2)+(-7(3x-4))/(7x^2)}}} Factor out the GCF from the second fraction's numerator



{{{(cross(7x^2)(14x+12))/cross(7x^2)+(- cross(7)(3x - 4))/(cross(7)x^2)}}} Cancel out the common terms.



{{{14x+12-(3x-4)/(x^2)}}} Simplify



So {{{(98x^3+84x^2-21x+28)/(7x^2)=14x+12-(3x-4)/(x^2)}}} where {{{x<>0}}}