Question 188224
Let L=Length and W=Width


"a width of (x+2) and the length of (x+4)" means that {{{W=x+2}}} and {{{L=x+4}}}



{{{A=LW}}} Start with the area of a rectangle formula



{{{A=(x+4)(x+2)}}} Plug in {{{W=x+2}}} and {{{L=x+4}}}



{{{A=(x)(x)+(x)(2)+(4)(x)+(4)(2)}}} FOIL



{{{A=x^2+2x+4x+8}}} Multiply



{{{A=x^2+6x+8}}} Combine like terms.



So the area is {{{A=x^2+6x+8}}}