Question 187784


{{{(y^2-4y-5)/(y^2+5y+4)}}} Start with the given expression.



{{{((y+1)(y-5))/(y^2+5y+4)}}} Factor {{{y^2-4y-5}}} to get {{{(y+1)(y-5)}}}.



{{{((y+1)(y-5))/((y+4)(y+1))}}} Factor {{{y^2+5y+4}}} to get {{{(y+4)(y+1)}}}.



{{{(highlight((y+1))(y-5))/((y+4)highlight((y+1)))}}} Highlight the common terms. 



{{{(cross((y+1))(y-5))/((y+4)cross((y+1)))}}} Cancel out the common terms. 



{{{(y-5)/(y+4)}}} Simplify. 



So {{{(y^2-4y-5)/(y^2+5y+4)}}} simplifies to {{{(y-5)/(y+4)}}}.



In other words, {{{(y^2-4y-5)/(y^2+5y+4)=(y-5)/(y+4)}}} where {{{y<>-4}}} or {{{y<>-1}}}