Question 187678
Note: whenever you have negative exponents raised over a fraction, you simply flip the fraction to make the exponents positive.


For example: {{{(1/2)^(-5)=(2/1)^5}}}



In this case, {{{3w^(-2)=3/w^2}}}, {{{z^(-4)=1/z^4}}}, and {{{4x^(-5)=4/x^5}}}



So 


{{{5w^9*z^7*3w^(-2)*z^(-4)*x^5*4x^(-5)}}} 



becomes



{{{5w^9*z^7*(3/w^2)(1/z^4)*x^5*(4/x^5)}}}



----------------------------------------------------------



{{{5w^9*z^7*(3/w^2)(1/z^4)*x^5*(4/x^5)}}} Start with the given expression.



{{{(5*3*4*w^9*z^7*x^5)/(w^2*z^4*x^5)}}} Combine and multiply the fractions.



{{{(60*w^9*z^7*x^5)/(w^2*z^4*x^5)}}} Multiply



{{{60*w^(9-2)*z^(7-4)*x^(5-5)}}} Now subtract the exponents to divide. Only subtract the exponents of the common terms. 



{{{60*w^7*z^3*x^0}}} Subtract



{{{60*w^7*z^3}}} Simplify




So {{{5w^9*z^7*3w^(-2)*z^(-4)*x^5*4x^(-5)=60*w^7*z^3}}} as long as {{{x<>0}}}, {{{w<>0}}} and {{{z<>0}}}