Question 187433
{{{x^2=-16}}} Start with the given equation.



{{{x=0 +- sqrt(-16)}}} Take the square root of both sides.



{{{x=sqrt(-16)}}} or {{{x=-sqrt(-16)}}} Break up the "plus/minus"



{{{x=sqrt(-1*4^2)}}} or {{{x=-sqrt(-1*4^2)}}} Factor -16 into {{{-1*4^2}}}



{{{x=sqrt(-1)*sqrt(4^2)}}} or {{{x=-sqrt(-1)*sqrt(4^2)}}} Break up the square root.



{{{x=i*sqrt(4^2)}}} or {{{x=-i*sqrt(4^2)}}} Replace {{{sqrt(-1)}}} with {{{i}}}



{{{x=i*4}}} or {{{x=-i*4}}} Take the square root of {{{4^2}}} to get 4



{{{x=4i}}} or {{{x=-4i}}} Rearrange the terms.




So the solutions are {{{x=4i}}} or {{{x=-4i}}} (which are complex).