Question 187073
{{{A=LW}}} Start with the given equation.



{{{(pq)/18=(4/p)W}}} Plug in {{{A=(pq)/18}}} and {{{L=4/p}}}



{{{((pq)/18)p=cross(p)(4/cross(p))W}}} Multiply both sides by "p".



{{{(p^2q)/18=4W}}} Multiply



{{{((p^2q)/18)(1/4)=cross(1/4)*cross(4)W}}} Multiply both sides by {{{1/4}}}.



{{{(p^2q)/72=W}}} Multiply the fractions.



So the width is {{{W=(p^2q)/72}}}