Question 186599


Looking at the expression {{{w^2-12w+20}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-12}}}, and the last term is {{{20}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{20}}} to get {{{(1)(20)=20}}}.



Now the question is: what two whole numbers multiply to {{{20}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-12}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{20}}} (the previous product).



Factors of {{{20}}}:

1,2,4,5,10,20

-1,-2,-4,-5,-10,-20



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{20}}}.

1*20
2*10
4*5
(-1)*(-20)
(-2)*(-10)
(-4)*(-5)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-12}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>1+20=21</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>2+10=12</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>4+5=9</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-1+(-20)=-21</font></td></tr><tr><td  align="center"><font color=red>-2</font></td><td  align="center"><font color=red>-10</font></td><td  align="center"><font color=red>-2+(-10)=-12</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-4+(-5)=-9</font></td></tr></table>



From the table, we can see that the two numbers {{{-2}}} and {{{-10}}} add to {{{-12}}} (the middle coefficient).



So the two numbers {{{-2}}} and {{{-10}}} both multiply to {{{20}}} <font size=4><b>and</b></font> add to {{{-12}}}



Now replace the middle term {{{-12w}}} with {{{-2w-10w}}}. Remember, {{{-2}}} and {{{-10}}} add to {{{-12}}}. So this shows us that {{{-2w-10w=-12w}}}.



{{{w^2+highlight(-2w-10w)+20}}} Replace the second term {{{-12w}}} with {{{-2w-10w}}}.



{{{(w^2-2w)+(-10w+20)}}} Group the terms into two pairs.



{{{w(w-2)+(-10w+20)}}} Factor out the GCF {{{w}}} from the first group.



{{{w(w-2)-10(w-2)}}} Factor out {{{10}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(w-10)(w-2)}}} Combine like terms. Or factor out the common term {{{w-2}}}


---------------------------------------------



Answer:



So {{{w^2-12w+20}}} factors to {{{(w-10)(w-2)}}}.



Note: you can check the answer by FOILing {{{(w-10)(w-2)}}} to get {{{w^2-12w+20}}} or by graphing the original expression and the answer (the two graphs should be identical).