Question 186277
The table is for a quadratic equation- 
x, y
-3, 0
-2, -7
-1, -8
0, -3
1, ? 
Determine the quadratic equation using the information from the table. And solve for '?'.
----------------
Quadratic form: y = ax^2 + bx + c
Using (0,-3) you get -3 = a*0 + b*0 + c
So c = -3
----------------------
You now know y = ax^2 + bx -3
---------------
Substitute two of the point values into the form to solve for a and b.
Using (-3,0) you get: a(-3)^2 + b(-3) -3 = 0
Using (-2,-7) you get: a(-2)^2 + b(-2) - 3 = -7
-------------------------------
Simplify these equations:
9a - 3b = 3
4a - 2b = -4
-----------------
Modify:
18a - 6b = 6
12a - 6b = -12
---------------
Subtract to solve for "a":
6a = 18
a = 3
------
Substitute into 4a - 2b = -4 to solve for "b":
12 - 2b = -4
-2b = -16
b = 8

--------------------
Equation: y = 3x^2 + 8x -3
====================================
Find "?".
f(1) = 3*1 + 8*1 -3 = 8
====================================
Cheers,
Stan H.