Question 185816
{{{sqrt(x^4*y^3)}}} Start with the given expression 



{{{sqrt(x^2*x^2*y^3)}}} Factor {{{x^4}}} to get {{{x^2*x^2}}} (note: we want to factor the expression into a product of squares)



{{{sqrt(x^2*x^2*y^2*y)}}} Factor {{{y^3}}} to get {{{y^2*y}}}



{{{sqrt(x^2)*sqrt(x^2)*sqrt(y^2)*sqrt(y)}}} Break up the square root.



{{{x*x*sqrt(y^2)*sqrt(y)}}} Take the square root of {{{x^2}}} to get {{{x}}}



{{{x*x*y*sqrt(y)}}} Take the square root of {{{y^2}}} to get {{{y}}}



{{{x^2*y*sqrt(y)}}} Multiply




So {{{sqrt(x^4*y^3)=x^2*y*sqrt(y)}}} where every variable is non-negative.