Question 185544


{{{(6y-8)^2}}} Start with the given expression.



{{{(6y-8)(6y-8)}}} Expand. Remember something like {{{x^2=x*x}}}.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(6y)-8)(highlight(6y)-8)}}} Multiply the <font color="red">F</font>irst terms:{{{(6*y)*(6*y)=36*y^2}}}.



{{{(highlight(6y)-8)(6y+highlight(-8))}}} Multiply the <font color="red">O</font>uter terms:{{{(6*y)*(-8)=-48*y}}}.



{{{(6y+highlight(-8))(highlight(6y)-8)}}} Multiply the <font color="red">I</font>nner terms:{{{(-8)*(6*y)=-48*y}}}.



{{{(6y+highlight(-8))(6y+highlight(-8))}}} Multiply the <font color="red">L</font>ast terms:{{{(-8)*(-8)=64}}}.



---------------------------------------------------

So we have the terms: {{{36*y^2}}}, {{{-48*y}}}, {{{-48*y}}}, and {{{64}}} 



{{{36*y^2-48*y-48*y+64}}} Now add every term listed above to make a single expression.



{{{36*y^2-96*y+64}}} Now combine like terms.



So {{{(6y-8)^2}}} FOILs to {{{36*y^2-96*y+64}}}.



In other words, {{{(6y-8)^2=36*y^2-96*y+64}}}.