Question 185352
I'm assuming that the expression is really {{{(-36a^2-48a)/(18a^3+24a^2)}}}



{{{(-36a^2-48a)/(18a^3+24a^2)}}} Start with the given expression.




{{{(-6*2a(3a+4))/(18a^3+24a^2)}}} Factor {{{-36a^2-48a)}}} to get {{{-6*2a(3a+4)}}}.



{{{(-6*2a(3a+4))/(6a*a(3a+4))}}} Factor {{{18a^3+24a^2}}} to get {{{6a*a(3a+4)}}}.



{{{(-highlight(6)*2*highlight(a)*highlight((3a+4)))/(highlight(6)highlight(a)*a*highlight((3a+4)))}}} Highlight the common terms.



{{{(-cross(6)*2*cross(a)*cross((3a+4)))/(cross(6)cross(a)*a*cross((3a+4)))}}} Cancel out the common terms.



{{{-2/a}}} Simplify



====================================


Answer:



So {{{(-36a^2-48a)/(18a^3+24a^2)}}} simplifies to {{{-2/a}}}




In other words, {{{(-36a^2-48a)/(18a^3+24a^2)=-2/a}}} where {{{a<>0}}} or {{{a<>-4/3}}}