Question 185342
</pre><font size=4><b>
In the problem you got 2 points given: (1,3) & (2,5)
Via Point-Slope Form Eqn: {{{m=(y[2]-y[1])/(x[2]-x[1])}}}
{{{m=(5-3)/(2-1)=2/1=highlight(2=m=Slope)}}}
Net, get the Y-Intercept "b" on point (1,3) via Slope-Intercept Form:
{{{y=mx+b}}}
{{{3=2*1+b}}}
{{{b=3-2=1}}}, Y-Intercept
Also on point (2,5), should be the same because it is a line:
{{{5=2*2+b}}}
{{{b=5-4=1}}}, Y-Intercept
Your Line Eqn--->{{{highlight(y=2x+1)}}}
For X-Intercept: 
{{{f(y)=0}}}
{{{0=2*x+1}}}---->{{{2x=-1}}}---->{{{cross(2)x/cross(2)=-1/2}}}
{{{highlight(x=-1/2)}}}
Now, let's plot the generated points:
{{{drawing(400,400,-8,8,-8,8,grid(1),graph(400,400,-8,8,-8,8),blue(circle(-1/2,0,.12)),blue(circle(0,1,.12)),green(circle(1,3,.12)),green(circle(2,5,.12)),green(circle(3,7,.12)),green(circle(-1,-1,.12)),green(circle(-2,-3,.12)),green(circle(-3,-5,.12)),green(circle(-4,-7,.12)))}}}----->{{{drawing(400,400,-8,8,-8,8,grid(1),graph(400,400,-8,8,-8,8,2x+1),blue(circle(-1/2,0,.12)),blue(circle(0,1,.12)),green(circle(1,3,.12)),green(circle(2,5,.12)),green(circle(3,7,.12)),green(circle(-1,-1,.12)),green(circle(-2,-3,.12)),green(circle(-3,-5,.12)),green(circle(-4,-7,.12)))}}}
*See "Green" points-->{{{Slope=2/1=Rise/Run}}}: "2" steps up or down; "1" step left or right, FROM THE Y-INTERCEPT "b" (0,1)
See Line passing thru (1,3) & (2,5)
.
Thank you,
Jojo</pre>