Question 183836
</pre><font size=4><b>
We know Slope-Intercept Form follows eqn-----> {{{y=mx+b}}}
where{{{system(m=slope, b=yIntercept)}}}
As given, {{{y=(1/2)x+3}}}
The {{{Slope=m=1/2}}}
{{{yIntercept=3}}}
In order to find out the x & y intercepts of the eqn,
let {{{f(y)=0}}}:
{{{0=(1/2)x+3}}}
{{{(1/2)x=-3}}}--->{{{x=2*-3}}}
{{{highlight(x=-6)}}}
Also, let {{{f(x)=0}}}
{{{y=(1/2)0+3}}}
{{{highlight(y=3)}}}, as shown already "b"
So, when we graph it;
{{{drawing(350,350,-10,5,-5,5,grid(1),graph(350,350,-10,5,-5,5),circle(-6,0,.12),circle(0,3,.12))}}}Now, for the {{{Slope=m=1/2=Rise/Run}}}
On the "Rise", meaning "up" or "down" on the y-axis.
The "Run" meaning "left" or "right" of the x-axis. In this case, from y-intercept of "(0,3)", next point will be "1" up or down and "2" left or right.
Do the same also for the x-intercept of (-6,0)
{{{drawing(350,350,-10,5,-5,5,grid(1),graph(350,350,-10,5,-5,5),circle(-6,0,.12),circle(0,3,.12),green(circle(2,4,.12)),green(circle(-2,2,.12)),green(circle(-4,1,.12)),green(circle(-8,-1,.12))))}}}---->{{{drawing(350,350,-10,5,-5,5,grid(1),graph(350,350,-10,5,-5,5,(1/2)x+3),circle(-6,0,.12),circle(0,3,.12),green(circle(2,4,.12)),green(circle(-2,2,.12)),green(circle(-4,1,.12)),green(circle(-8,-1,.12))))}}}

Thank you,
Jojo</pre>