Question 184085
</pre><font size=4><b>
The equation of the line that goes through the point ( 2, 5 ) is parallel to the line going through the points ( -1 ,2 ) and ( 1 ,6 ) is written in the form y = mx+b where
m is:
and b is: 
Important:
We know when 2 lines are parallel, their {{{Slope}}} is the same:{{{m[1]=m[2]}}}
Solving for {{{Slope}}}, via Point-Slope Form{{{system(m=(y[2]-y[1])/(x[2]-x[1]))}}}
Thru points (-1,2) & (1,6):
{{{m=(6-2)/(1-(-1))=4/(1+1)=4/2=2}}}--->{{{highlight(m[1]=m[2]=2)}}} REMEMBER.
Then Via Slope-Intercept Form: {{{y=mx+b}}} on point (2,5):
{{{5=2(2)+b}}}
{{{b=5-4=highlight(1)}}}, Y-Intercept
Then it follows eqn (thru point (2,5))-->{{{y=2x+1}}}
In doubt? We'll see the graph:
{{{drawing(400,400,-10,10,-10,10,grid(1),graph(400,400,-10,10,-10,10,2x+1),green(circle(2,5,.15))))}}}
To see the line passing thru points (-1,2) & (1,6)
Slope-Intercept form, {{{y=mx+b}}}
@ point (-1,2)
{{{2=2(-1)+b}}}--->{{{b=2+2=4}}}
@ point (1,6)
{{{6=2(1)+b}}}--->{{{b=6-2=4}}}
It follows-------->{{{y=2x+4}}}
And we see the graph:
{{{drawing(400,400,-10,10,-10,10,grid(1),graph(400,400,-10,10,-10,10,2x+1,2x+4),green(circle(2,5,.15)),blue(circle(-1,2,.15)),blue(circle(1,6,.15)))}}}

Thank you, 
Jojo</pre>