Question 183832
Find a quadratic function F(x)=ax^2+bx+c for each parabola described.
maximum value 6 when x=-2; one zero is 1
---------------------------------------------
Maximum occurs when x = -b/2a
So, you have -b/2a = -2
b = 4a
-----------
Substitute and you have 
f(x) = ax^2 +(4a)x + c
-----
Then f(-2) = 4a -8a + c = 6
c  = 4a + 6
-------------------
Substitute to get:
f(x) ax^2 +(4a)x + 4a + 6
----------------------------
Then f(1) = a + 4a + 4a + 6 = 1
9a + 6 = 1
9a = -5
a = -5/9
---
b = 4a = -20/9
---
c = 4a+6 = -20/9 + 54/9 = 34/9
-----------------------------------
Equation:
y = (-5/9)x^2 -(20/9)x + (34/9)

============================================
Cheers,
Stan H.
========================================