Question 183247
I'm assuming that you want to factor this.




Looking at the expression {{{5y^2-28y-12}}}, we can see that the first coefficient is {{{5}}}, the second coefficient is {{{-28}}}, and the last term is {{{-12}}}.



Now multiply the first coefficient {{{5}}} by the last term {{{-12}}} to get {{{(5)(-12)=-60}}}.



Now the question is: what two whole numbers multiply to {{{-60}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-28}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-60}}} (the previous product).



Factors of {{{-60}}}:

1,2,3,4,5,6,10,12,15,20,30,60

-1,-2,-3,-4,-5,-6,-10,-12,-15,-20,-30,-60



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-60}}}.

1*(-60)
2*(-30)
3*(-20)
4*(-15)
5*(-12)
6*(-10)
(-1)*(60)
(-2)*(30)
(-3)*(20)
(-4)*(15)
(-5)*(12)
(-6)*(10)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-28}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>1+(-60)=-59</font></td></tr><tr><td  align="center"><font color=red>2</font></td><td  align="center"><font color=red>-30</font></td><td  align="center"><font color=red>2+(-30)=-28</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>3+(-20)=-17</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>4+(-15)=-11</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>5+(-12)=-7</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>6+(-10)=-4</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>-1+60=59</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>-2+30=28</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>-3+20=17</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>-4+15=11</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-5+12=7</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-6+10=4</font></td></tr></table>



From the table, we can see that the two numbers {{{2}}} and {{{-30}}} add to {{{-28}}} (the middle coefficient).



So the two numbers {{{2}}} and {{{-30}}} both multiply to {{{-60}}} <font size=4><b>and</b></font> add to {{{-28}}}



Now replace the middle term {{{-28y}}} with {{{2y-30y}}}. Remember, {{{2}}} and {{{-30}}} add to {{{-28}}}. So this shows us that {{{2y-30y=-28y}}}.



{{{5y^2+highlight(2y-30y)-12}}} Replace the second term {{{-28y}}} with {{{2y-30y}}}.



{{{(5y^2+2y)+(-30y-12)}}} Group the terms into two pairs.



{{{y(5y+2)+(-30y-12)}}} Factor out the GCF {{{y}}} from the first group.



{{{y(5y+2)-6(5y+2)}}} Factor out {{{6}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(y-6)(5y+2)}}} Combine like terms. Or factor out the common term {{{5y+2}}}


---------------------------------------------



Answer:



So {{{5y^2-28y-12}}} factors to {{{(y-6)(5y+2)}}}.



In other words, {{{5y^2-28y-12=(y-6)(5y+2)}}}.



Note: you can check the answer by FOILing {{{(y-6)(5y+2)}}} to get {{{5y^2-28y-12}}} or by graphing the original expression and the answer (the two graphs should be identical).