Question 183250
I'm assuming that you want to factor this.





Looking at the expression {{{w^2+14w+49}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{14}}}, and the last term is {{{49}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{49}}} to get {{{(1)(49)=49}}}.



Now the question is: what two whole numbers multiply to {{{49}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{14}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{49}}} (the previous product).



Factors of {{{49}}}:

1,7,49

-1,-7,-49



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{49}}}.

1*49
7*7
(-1)*(-49)
(-7)*(-7)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{14}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>49</font></td><td  align="center"><font color=black>1+49=50</font></td></tr><tr><td  align="center"><font color=red>7</font></td><td  align="center"><font color=red>7</font></td><td  align="center"><font color=red>7+7=14</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-49</font></td><td  align="center"><font color=black>-1+(-49)=-50</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-7+(-7)=-14</font></td></tr></table>



From the table, we can see that the two numbers {{{7}}} and {{{7}}} add to {{{14}}} (the middle coefficient).



So the two numbers {{{7}}} and {{{7}}} both multiply to {{{49}}} <font size=4><b>and</b></font> add to {{{14}}}



Now replace the middle term {{{14w}}} with {{{7w+7w}}}. Remember, {{{7}}} and {{{7}}} add to {{{14}}}. So this shows us that {{{7w+7w=14w}}}.



{{{w^2+highlight(7w+7w)+49}}} Replace the second term {{{14w}}} with {{{7w+7w}}}.



{{{(w^2+7w)+(7w+49)}}} Group the terms into two pairs.



{{{w(w+7)+(7w+49)}}} Factor out the GCF {{{w}}} from the first group.



{{{w(w+7)+7(w+7)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(w+7)(w+7)}}} Combine like terms. Or factor out the common term {{{w+7}}}



{{{(w+7)^2}}} Condense the factors


---------------------------------------------



Answer:



So {{{w^2+14w+49}}} factors to {{{(w+7)^2}}}.



In other words, {{{w^2+14w+49=(w+7)^2}}}



Note: you can check the answer by FOILing {{{(w+7)(w+7)}}} to get {{{w^2+14w+49}}} or by graphing the original expression and the answer (the two graphs should be identical).