Question 183248
I'm assuming that you want to factor this.





Looking at the expression {{{z^2-10z-24}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-10}}}, and the last term is {{{-24}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-24}}} to get {{{(1)(-24)=-24}}}.



Now the question is: what two whole numbers multiply to {{{-24}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-10}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-24}}} (the previous product).



Factors of {{{-24}}}:

1,2,3,4,6,8,12,24

-1,-2,-3,-4,-6,-8,-12,-24



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-24}}}.

1*(-24)
2*(-12)
3*(-8)
4*(-6)
(-1)*(24)
(-2)*(12)
(-3)*(8)
(-4)*(6)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-10}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>1+(-24)=-23</font></td></tr><tr><td  align="center"><font color=red>2</font></td><td  align="center"><font color=red>-12</font></td><td  align="center"><font color=red>2+(-12)=-10</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>3+(-8)=-5</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>4+(-6)=-2</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>-1+24=23</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-2+12=10</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-3+8=5</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-4+6=2</font></td></tr></table>



From the table, we can see that the two numbers {{{2}}} and {{{-12}}} add to {{{-10}}} (the middle coefficient).



So the two numbers {{{2}}} and {{{-12}}} both multiply to {{{-24}}} <font size=4><b>and</b></font> add to {{{-10}}}



Now replace the middle term {{{-10z}}} with {{{2z-12z}}}. Remember, {{{2}}} and {{{-12}}} add to {{{-10}}}. So this shows us that {{{2z-12z=-10z}}}.



{{{z^2+highlight(2z-12z)-24}}} Replace the second term {{{-10z}}} with {{{2z-12z}}}.



{{{(z^2+2z)+(-12z-24)}}} Group the terms into two pairs.



{{{z(z+2)+(-12z-24)}}} Factor out the GCF {{{z}}} from the first group.



{{{z(z+2)-12(z+2)}}} Factor out {{{12}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(z-12)(z+2)}}} Combine like terms. Or factor out the common term {{{z+2}}}


---------------------------------------------



Answer:



So {{{z^2-10z-24}}} factors to {{{(z-12)(z+2)}}}.



Note: you can check the answer by FOILing {{{(z-12)(z+2)}}} to get {{{z^2-10z-24}}} or by graphing the original expression and the answer (the two graphs should be identical).