Question 183076


{{{sqrt(98)-sqrt(50)-sqrt(72)}}} Start with the given expression



{{{7*sqrt(2)-sqrt(50)-sqrt(72)}}} Simplify {{{sqrt(98)}}} to get {{{7*sqrt(2)}}}. Note: If you need help with simplifying square roots, check out this <a href=http://www.algebra.com/algebra/homework/Radicals/simplifying-square-roots.solver> solver</a>.



{{{7*sqrt(2)-5*sqrt(2)-sqrt(72)}}} Simplify {{{sqrt(50)}}} to get {{{5*sqrt(2)}}}.



{{{7*sqrt(2)-5*sqrt(2)-6*sqrt(2)}}} Simplify {{{sqrt(72)}}} to get {{{6*sqrt(2)}}}.



Since we have the common term {{{sqrt(2)}}}, we can combine like terms



{{{(7-5-6)sqrt(2)}}} Combine like terms. Remember, {{{5x+3x-4x=(5+3-4)x=4x}}}



{{{-4*sqrt(2)}}} Now simplify {{{7-5-6}}} to get {{{-4}}}



So {{{sqrt(98)-sqrt(50)-sqrt(72)}}} simplifies to {{{-4*sqrt(2)}}}. 



In other words,  {{{sqrt(98)-sqrt(50)-sqrt(72)=-4*sqrt(2)}}}