Question 182956


Looking at the expression {{{6x^2+7x-20}}}, we can see that the first coefficient is {{{6}}}, the second coefficient is {{{7}}}, and the last term is {{{-20}}}.



Now multiply the first coefficient {{{6}}} by the last term {{{-20}}} to get {{{(6)(-20)=-120}}}.



Now the question is: what two whole numbers multiply to {{{-120}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{7}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-120}}} (the previous product).



Factors of {{{-120}}}:

1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120

-1,-2,-3,-4,-5,-6,-8,-10,-12,-15,-20,-24,-30,-40,-60,-120



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-120}}}.

1*(-120)
2*(-60)
3*(-40)
4*(-30)
5*(-24)
6*(-20)
8*(-15)
10*(-12)
(-1)*(120)
(-2)*(60)
(-3)*(40)
(-4)*(30)
(-5)*(24)
(-6)*(20)
(-8)*(15)
(-10)*(12)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{7}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-120</font></td><td  align="center"><font color=black>1+(-120)=-119</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>2+(-60)=-58</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-40</font></td><td  align="center"><font color=black>3+(-40)=-37</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>4+(-30)=-26</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>5+(-24)=-19</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>6+(-20)=-14</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>8+(-15)=-7</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>10+(-12)=-2</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>120</font></td><td  align="center"><font color=black>-1+120=119</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>-2+60=58</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>-3+40=37</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>-4+30=26</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>-5+24=19</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>-6+20=14</font></td></tr><tr><td  align="center"><font color=red>-8</font></td><td  align="center"><font color=red>15</font></td><td  align="center"><font color=red>-8+15=7</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-10+12=2</font></td></tr></table>



From the table, we can see that the two numbers {{{-8}}} and {{{15}}} add to {{{7}}} (the middle coefficient).



So the two numbers {{{-8}}} and {{{15}}} both multiply to {{{-120}}} <font size=4><b>and</b></font> add to {{{7}}}



Now replace the middle term {{{7x}}} with {{{-8x+15x}}}. Remember, {{{-8}}} and {{{15}}} add to {{{7}}}. So this shows us that {{{-8x+15x=7x}}}.



{{{6x^2+highlight(-8x+15x)-20}}} Replace the second term {{{7x}}} with {{{-8x+15x}}}.



{{{(6x^2-8x)+(15x-20)}}} Group the terms into two pairs.



{{{2x(3x-4)+(15x-20)}}} Factor out the GCF {{{2x}}} from the first group.



{{{2x(3x-4)+5(3x-4)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2x+5)(3x-4)}}} Combine like terms. Or factor out the common term {{{3x-4}}}


---------------------------------------------



Answer:



So {{{6x^2+7x-20}}} factors to {{{(2x+5)(3x-4)}}}.