Question 182948


{{{4x^2+40x+100}}} Start with the given expression



{{{4(x^2+10x+25)}}} Factor out the GCF {{{4}}}



Now let's focus on the inner expression {{{x^2+10x+25}}}





------------------------------------------------------------




Looking at the expression {{{x^2+10x+25}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{10}}}, and the last term is {{{25}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{25}}} to get {{{(1)(25)=25}}}.



Now the question is: what two whole numbers multiply to {{{25}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{10}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{25}}} (the previous product).



Factors of {{{25}}}:

1,5,25

-1,-5,-25



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{25}}}.

1*25
5*5
(-1)*(-25)
(-5)*(-5)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{10}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>25</font></td><td  align="center"><font color=black>1+25=26</font></td></tr><tr><td  align="center"><font color=red>5</font></td><td  align="center"><font color=red>5</font></td><td  align="center"><font color=red>5+5=10</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-25</font></td><td  align="center"><font color=black>-1+(-25)=-26</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-5+(-5)=-10</font></td></tr></table>



From the table, we can see that the two numbers {{{5}}} and {{{5}}} add to {{{10}}} (the middle coefficient).



So the two numbers {{{5}}} and {{{5}}} both multiply to {{{25}}} <font size=4><b>and</b></font> add to {{{10}}}



Now replace the middle term {{{10x}}} with {{{5x+5x}}}. Remember, {{{5}}} and {{{5}}} add to {{{10}}}. So this shows us that {{{5x+5x=10x}}}.



{{{x^2+highlight(5x+5x)+25}}} Replace the second term {{{10x}}} with {{{5x+5x}}}.



{{{(x^2+5x)+(5x+25)}}} Group the terms into two pairs.



{{{x(x+5)+(5x+25)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x+5)+5(x+5)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+5)(x+5)}}} Combine like terms. Or factor out the common term {{{x+5}}}



{{{(x+5)^2}}} Condense the terms.



So {{{x^2+10x+25}}} factors to {{{(x+5)^2}}}.





------------------------------------------------------------





So our expression goes from {{{4(x^2+10x+25)}}} and factors further to {{{4(x+5)^2}}}



------------------

Answer:


So {{{4x^2+40x+100}}} factors to {{{4(x+5)^2}}}